A GUAIANOLIDE FROM STEVIA BREVIARISTATA

Juan C. Oberti, Roberto R. Gil, Virginia E. Sosa* and Werner Herz*

Instituto Multidisciplinario de Biología Vegetal, CONICET and Facultad de Ciéncias Químicas, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina; *Department of Chemistry, The Florida State University, Tallahassee, FL 32306-3006, U.S.A.

(Received 30 October 1985)

Key Word Index-Stevia breviaristata; Eupatoricae; Compositae; guaianolide; sesquiterpene lactone.

Abstract—Extraction of Stevia breviaristata furnished a new guaianolide breviarolide.

Approximately 27 species of the large genus Stevia (Compositae, tribe Eupatorieae, subtribe Piqueriinae [1]) have been studied chemically. Summaries of the results through 1984 have appeared [2-4]; since then guaianolides and flavones have been reported from S. procumbens [5], pseudoguaianolides and a xanthanolide from S. isomeca [6] and guaianolides, a heliangolide and longipinene derivatives were found in S. lemmonia [7]. Also a variety of substances, principally longipinene derivatives and diterpenes but no sesquiterpene lactones, has been isolated from S. berlandieri and S. salicifolia [7], kauranes have been found in S. eupatoria [8] and flavones have been reported from S. microchaeta and S. origanoides [9]. The present brief report deals with isolation of the new guaianolide 1 from the South American species S. breviaristata Hook et Arn.

The carbon skeleton of the new substance which we have named breviarolide, mp 83-85°, C₂₀H₂₆O₇ (high resolution MS), was established in the usual manner by sequential spin decoupling of the ¹H NMR spectrum (Table 1), beginning with the narrowly split doublets of H-13a,b at δ 6.13 and 5.37 which located the multiplet of H-7 at δ 3.26. Subsequent decoupling showed that sequences H-7, H-6, H-5 and H-7, H-8, H-9a,b, H-10 met at the H-1 multiplet at δ 2.91 which was further coupled to H-2a and H-2b. As usual in $1\alpha H, 5\alpha H, 6\beta H$ -guai-3-en-6.12-olides neither H-2a nor H-2b was coupled to H-3 at δ 5.54. Allylic coupling between H-3 and a vinyl methyl signal at δ 1.92, long range coupling between H-10 and the AB part of the ABX system centred at δ 3.47 further showed that the primary hydroxyl group was located on C-14, not on C-15. The nature of the ester side chain attached to C-8 was evident from the 1H NMR (H-3' at δ 6.70, H-4'a,b at δ 4.33) and ¹³C NMR spectra [10]*.

As for the stereochemistry, the cis-fusion of the alicyclic ring system, the trans-fusion of the lactone ring, with H-6 trans to H-5, and the β -orientation of the C-8 ester side chain could be deduced from the values of the coupling constants (Table 1). The NOE difference spectrum

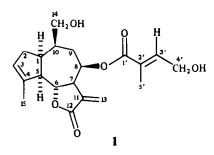


Table 1. 1H NMR spectrum of 1 (270 MHz, CDCl₃)

Н	δ
1	2.91 br qd
2a	2.26 br dd
2ь	superimp. on H-9a
3	5.54 br
5	2.55 br t
6	4.50 dd
7	3.26 dddd
8	5.68 <i>td</i>
9 a	2.14 br dd
9b	1.63 <i>ddd</i>
10	2.06 m
13a	6.13 d
13b	5.37 d
14	3.47*
15†	1.92 br d
3′	6.70 td
4'1	4.33 br d
5†	1.77 br d

^{*}Centre of AB part of ABX system.

^{*}In the 13C NMR spectra of eupasoppin and its analogues given in ref. [10] the assignments of C-2 and C-3, C-11 and C-2', and C-14 and C-5' should be interchanged.

[†]Intensity three protons.

Intensity two protons.

J (Hz): 1, 2a = 1, 10 = 6, 7 = 9; 1, 2b = 2a, 15 = 2b, 15 = 9a, 10 small; 1, 5

^{= 5, 6 = 9}b, 10 = 14a, 14b = 10; 2a, 2b

^{= 9}a, 9b = 15; 3, 15 = 3', 5' = 1.5; 7, 8

^{= 4}; 7,13a = 7,13b = 3; 8,9a = 8,9b

^{= 8; 10, 14 = 7; 3&#}x27;, 4' = 6; 4', 5' = 1.

1480 Short Reports

Table 2. ¹³C NMR spectrum of 1 (67.89 MHz, CDCl₃)

C	δ	
1	43.69 d*	
2	31.20 t*	
3	125.74 d	
4	142.96 s	
5	56.56 d*	
6	80.50 d	
7	46.99 d*	
8	68.59 d	
9	28.85 t*	
10	38.07 d*	
11	134.35 s	
12	169.48 s	
13	122.21 t	
14	65.95 t	
15	17.29 q	
1'	166.64 s	
2'	128.03 s	
3′	140.90 d	
4'	59.63 t	
5′	12.71 q	

^{*}Assignments by selective decoupling.

(Table 3) confirmed not only that H-1, H-5, H-7 and H-8 were cis, but also demonstrated that H-10 was cis to H-7, H-8, and H-10, thus establishing the complete relative stereochemistry shown in formula 1.

EXPERIMENTAL

Stevia breviaristata Hook et Arn. was collected by V. E. S. in Cochangasta, Dpt. Capital, La Rioja Province, Argentina in April 1984 and identified by Dr. Luis Ariza Espinar. A voucher specimen (Oberti #58) was deposited in the Museo Botanico, Cordoba. The aerial parts (600 g) were exhaustively extracted with CHCl₃. The usual work-up [11] yielded a yellow gum (7.9 g) which was adsorbed on 14 g of silica gel and chromatographed over a column packed with the same adsorbent (100 g) and CHCl₃ in 125 ml fractions, the polarity of the CHCl₃ eluent being increased by addition of MeOH in the ratios 1:99, 1:49, 1:24,

Table 3. NOE difference spectrum of

Saturation	Observed NOE (%)
H-1	H-5 (11)
	H-10 (14.5)
H-6	H-9b (8.5)
H-7	H-5 (12)
	H-6 (4.5)
	H-8 (9.5)
	H-10 (11)
H-8	H-7 (10)
	H-10 (7.5)
H-14	no observable NOE

3:47 and 1:10. Fractions 23–27, which contained the same material (TLC analysis), were combined and recrystallized from C_6H_6 -CHCl₃ to give 90 mg of 1, mp 83–85°; $R_7 \times R_8 \times R_9 \times R_9$

Acknowledgment-RRG thanks CONICET for a fellowship.

REFERENCES

- 1. King, R. M. and Robinson, H. (1980) Phytologia 46, 446.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 2021.
- Oberti, J. C., Sosa, V. E., Herz, W., Prasad, J. S. and Goedken, V. L. (1983) J. Org. Chem. 48, 4038.
- Sosa, V. E., Oberti, J. C., Prasad, J. S. and Herz, W. (1984) Phytochemistry 23, 1515.
- Sosa, V. E., Gil, R. R., Oberti, J. C., Kulanthaivel, P. and Herz, W. (1985) J. Nat. Prod. 48, 340.
- Bohlmann, F., Umemoto, K. and Jakupovic, J. (1985) Phytochemistry 24, 1017.
- Bohlmann, F. and Zdero, C. (1985) Justus Liebig's Ann. Chem. 1764.
- Ortega, A., Morales, F. J. and Salmón, M. (1985) Phytochemistry 24, 1850.
- Rajbhandari, A. and Roberts, M. F. (1985) J. Nat. Prod. 48, 502.
- 10. Herz, W. and Sharma, R. P. (1976) J. Org. Chem. 41, 1015.
- 11. Herz, W. and Högenauer, G. (1962) J. Org. Chem. 27, 905.